CS-523 Advanced Topics on
Privacy Enhancing Technologies
Machine Learning Exercises

1 Base Rates are Important

Standard classification metrics such as true positive and true negative rates give
a good indication of a classifier’s performance when classes are balanced. How-
ever, they do not take into account the base rates of classes, thus in imbalanced
settings they are misleading.

Consider an adversary that mounts an attribute inference attack. Using
access to a medical dataset, they are trying to infer whether different people
who were present in the dataset have a disease A. The disease is not directly
mentioned in the dataset, hence the adversary has built a classifier C' to infer
this. The true positive rate of the classifier Pr[C' = 1| A = 1] = 0.98, and the
false positive rate is Pr[C' = 1| A = 0] = 0.01. The disease is very rare: its
prevalence (base rate) in the general population is u = Pr[A = 1] = 0.0001.
Assume this is the best prior the adversary has.

One intuitive classification metric that takes into account the base rate is
Bayesian detection rate, or positive predictive value. In this setting, it is defined
as the probability that a person has the disease given that the classifier predicted
so: Pr[A =1]| C = 1]. Contrast this to the true positive rate Pr[C =1 | A =1]:
the probability that the classifier predicts disease if a person has the disease.

1. Compute the adversary’s Bayesian detection rate.
Solution:
PrlC=1|A=1]pu
Pr[C=1|A=1] - p+Pr[C=1|A=0]-(1—p)
This equals approximately 0.01. This probability is rather low, indicat-

ing that the adversary’s attack is not effective. In fact, about 99% of
adversary’s detections will be false positives: Pr[A =0 C = 1] = 0.99.

PrA=1]|C=1] =

2. What would the false positive rate of the adversary’s classifier have to be
so that Bayesian detection rate is reasonable?

Solution:
In general, “reasonable” will heavily depend on the context. Let’s say



that the adversary can tolerate 50% of effective “false positives.” Hence,
they want Pr[A =1 | C = 1] = 0.5. Depending on the context, combing
through these false positives might be too much of a burden for the ad-
versary, but it could be that this is acceptable as the adversary wants to
have some answers at all costs. This approximately results in the maxi-
mum classifier’s false positive rate Pr[C' = 0| A = 1] < 0.0001. Thus, in
this setting if the false positive rate is as low as the base rate, half of the
detections are false positives.

3. What would the base rate have to be so that the Bayesian detection rate
is reasonable?

Solution:

Increasing the base rate by one order of magnitude to 0.001 increases the
Bayesian detection rate to 50%. In general, the following plot shows the
relationship for this setting (x-axis is logarithmic):
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2 Learning with Strangers

A movie review site has operated a recommendation sharing system to suggest
movies to users for years. The site gathered users’ ratings and applied gradi-
ent descent in a central fashion, but they have decided to change this central
database to a privacy-preserving alternative.

1. The site decides that every user should keep his/her data locally. Each
user retrieves the model from the server, computes, and sends a gradient
update to the server. Is this approach private? How can the site change
this approach to improve privacy?

Solution:
No. The update is dependent on the data, and the site can infer informa-



tion from updates. To preserve privacy, users would could add noise to
the update that satisfies local differential privacy with small e.

. The site enables each user to apply a locally differentially private pertur-
bation to the updates. Either the noise magnitude should be low or there
will be a drastic reduction in functionality. The site groups online users
together and only allows users to rate movies when their group has at least
n users. Each group randomly chooses a leader that collects updates from
users, without noise, aggregates them together, applies a group noise, and
sends the aggregate update to the server. Assess the functionality and
privacy of this approach.

Solution:

Applying perturbation to an aggregate update requires less noise than ap-
plying the noise individually, which improves the functionality. However,
instead of the server, the group leader can observe the raw update of online
users, which undermines privacy. There is no guarantee that the leader
will be honest and a malicious server can fake many online users.

. The site decides to stop sending plain updates to the group leader and
replaces the role with an SMC computation. Is it safe to remove the
differentially private noise now that the update is performed on encrypted
data?

Solution:

The group noise is applied to the aggregate update to prevent the site
from extracting information about users. The SMC only hides the raw
updates from the group leader and does not change the site’s view, so this
change does not affect the necessity of the group noise.

. After the launch of a competitor service, the site managers are worried
about malicious users sabotaging the model. Assess the resilience of
the model against malicious users in the central approach and privacy-
preserving alternatives.

Solution:

e Central: each malicious account can only submit one rating per
movie, so the impact is low.

e Individual noise: a malicious user can send a fake direction with a
large magnitude to the server to directly impact the model. However,
the server can observe all updates one by one and discard suspicious
ones (limiting the magnitude). Therefore, limiting the attack.

e Group noise: the server only sees the aggregate update and the leader
is in charge of checking inputs. If a malicious user gets chosen as the
leader, then it can send a fake update with a magnitude relative to
the group size.



e Encrypted: no one can control individual updates, so malicious users
can easily corrupt the data. It’s possible to adjust the SMC to enforce
correctness, but it’s costly.

3 Membership and attribute inference: what’s
the connection?

In the class you learned about several types of privacy attacks.

One of them is membership inference attacks (MIA for short), where the
adversary aims to learn whether a target data point x € X is in the training set
or not. Given a data point z, the output of the MIA is either “in” or “out”.

Another example is attribute inference attacks (ATA), where the adversary
aims to learn the value of a sensitive feature of a target data point, given some
public knowledge about the point. We expand data points as a tuple z = (v,t) €
X =V x T, where v € V is the public knowledge and ¢ € T is the sensitive
feature. Inferring the sensitive feature is the target of the AIA. You can assume
in this exercise that the values of ¢ are uniformly distributed over 7. Given the
public knowledge v, the output of the AIA is a value t; € T.

Your task for this exercise is to explore the connection between MIA and
ATA.

1. Construct an ATA using a MIA in a black box manner.
2. Construct a MIA using an ATA in a black box manner.

3. What can you conclude?

Solution:

1. The adversary can run the MIA for each possible value ¢; of the sensitive
attribute. When the output of the membership attack on x; = (v,t;) is
“in”, the adversary can guess that ¢; is the correct value of the sensitive
attribute.

2. Given the target @ = (x,,t,), the adversary can run the AIA for the
sensitive feature with publicly known x,, and compare the output ¢ to
the actual value of the feature t,. If the output matches, the adversary
guesses that the data point is a member of the training set.

3. This suggests that attribute inference is at least as difficult as membership
inference and vice versa. Hence, under the assumption that ¢ is uniformly
distributed, an ML system is vulnerable to MIA iff it is vulnerable to AIA.

If you want to read more about this, the section 5 of Privacy Risk in Machine
Learning by Yeom et al. contains extensive explanations.


https://arxiv.org/pdf/1709.01604.pdf
https://arxiv.org/pdf/1709.01604.pdf
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